
19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 1/58

Concurrency programming with Go
AUDACEs, 2017-06-01

Sebastien Binet
CNRS/IN2P3/LPC-Clermont

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 2/58

Software in High Energy Physics (HEP)

50's-90's: FORTRAN77

90's-...: C++

00's-...: Python

Software in HEP is mostly C++/Python (with pockets of Java and Fortran.)

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 3/58

Software in HEP is painful

Painful to develop:

deep and complex software stacks

huge dependencies issues (install, support)

compilation time

complex deployment of multi-GB stacks (shared libraries, con�guration, DBs, ...)

C++ is a complex language to learn, read, write and maintain

unpleasant edit-compile-run development cycle

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 4/58

Software in HEP is painful

Painful to use:

overly complicated Object Oriented systems

overly complicated inheritance hierarchies

overly complicated meta-template programming

installation of dependencies

granularity of dependencies

no simple, nor standard, way to handle dependencies across OSes, experiments, groups,
...

documentation

End-users tend to prefer Python because of its nicer development cycle, despite its runtime
performances (or lack thereof.)

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 5/58

Software in HEP: optimization and performances

Software is painful and does not perform well:

most of our stack is not optimized (OO anti-patterns, code-bloat from C++ templates)

memory leaks, slow to initialize (loading .so/.dll), slow to run

resources hungry to run and develop (CPU, VMem, people)

most of our stack has to be re-written: support of multi-cores machine,
parallelism/concurrency

Parallelism and concurrency need to be exposed and leveraged, but the language (C++14,
C++17, ...) is ill equiped for these tasks.

And C++ is not well adapted for large, distributed development teams (of varying
programming skills.)

Time for something new?

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 6/58

Are those our only options ?

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 7/58

Enter... Go

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 8/58

What is Go ?

$ go run hello.go
Hello from Go

A nice language with a nice mascot.

package main

import "fmt"

func main() {
 lang := "Go"
 fmt.Printf("Hello from %s\n", lang)
} Run

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 9/58

History

Project starts at Google in 2007 (by Griesemer, Pike, Thompson)

Open source release in November 2009

More than 700 contributors have joined the project

Version 1.0 release in March 2012

Version 1.1 release in May 2013

Version 1.2 release in December 2013

[...]

Version 1.6 release in February 2016

Version 1.7 release in August 2016

Version 1.8 release in February 2017

golang.org (https://golang.org)

https://golang.org/

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 10/58

Elements of Go

Russ Cox, Robert Griesemer, Ian Lance Taylor, Rob Pike, Ken Thompson

Concurrent, garbage-collected

An Open-source general progamming language (BSD-3)

feel of a dynamic language: limited verbosity thanks to the type inference system, map,
slices

safety of a static type system

compiled down to machine language (so it is fast, goal is ~10% of C)

object-oriented but w/o classes, builtin re�ection

�rst-class functions with closures

implicitly satis�ed interfaces

Available on all major platforms (Linux, Windows, macOS, Android, iOS, ...) and for many
architectures (amd64, arm, arm64, i386, s390x, mips64, ...)

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 11/58

Concurrency: basic examples

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 12/58

A boring function

We need an example to show the interesting properties of the concurrency primitives.
To avoid distraction, we make it a boring example.

func boring(msg string) {
 for i := 0; ; i++ {
 fmt.Println(msg, i)
 time.Sleep(time.Second)
 }
} Run

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 13/58

Slightly less boring

Make the intervals between messages unpredictable (still under a second).

func boring(msg string) {
 for i := 0; ; i++ {
 fmt.Println(msg, i)
 time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond)
 }
} Run

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 14/58

Running it

The boring function runs on forever, like a boring party guest.

func main() {
 boring("boring!")
}

func boring(msg string) {
 for i := 0; ; i++ {
 fmt.Println(msg, i)
 time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond)
 }
} Run

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 15/58

Ignoring it

The go statement runs the function as usual, but doesn't make the caller wait.

It launches a goroutine.

The functionality is analogous to the & on the end of a shell command.

package main

import (
 "fmt"
 "math/rand"
 "time"
)

func main() {
 go boring("boring!")
} Run

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 16/58

Ignoring it a little less

When main returns, the program exits and takes the boring function down with it.

We can hang around a little, and on the way show that both main and the launched
goroutine are running.

func main() {
 go boring("boring!")
 fmt.Println("I'm listening.")
 time.Sleep(2 * time.Second)
 fmt.Println("You're boring; I'm leaving.")
} Run

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 17/58

Goroutines

What is a goroutine? It's an independently executing function, launched by a go statement.

It has its own call stack, which grows and shrinks as required.

It's very cheap. It's practical to have thousands, even hundreds of thousands of goroutines.

It's not a thread.

There might be only one thread in a program with thousands of goroutines.

Instead, goroutines are multiplexed dynamically onto threads as needed to keep all the
goroutines running.

But if you think of it as a very cheap thread, you won't be far o�.

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 18/58

Communication

Our boring examples cheated: the main function couldn't see the output from the other
goroutine.

It was just printed to the screen, where we pretended we saw a conversation.

Real conversations require communication.

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 19/58

Channels

A channel in Go provides a connection between two goroutines, allowing them to
communicate.

 // Declaring and initializing.
 var c chan int
 c = make(chan int)
 // or
 c := make(chan int)

 // Sending on a channel.
 c <- 1

 // Receiving from a channel.
 // The "arrow" indicates the direction of data flow.
 value = <-c

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 20/58

Using channels

A channel connects the main and boring goroutines so they can communicate.

func boring(msg string, c chan string) {
 for i := 0; ; i++ {
 c <- fmt.Sprintf("%s %d", msg, i) // Expression to be sent can be any suitable value.
 time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond)
 }
}

func main() {
 c := make(chan string)
 go boring("boring!", c)
 for i := 0; i < 5; i++ {
 fmt.Printf("You say: %q\n", <-c) // Receive expression is just a value.
 }
 fmt.Println("You're boring; I'm leaving.")
} Run

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 21/58

Synchronization

When the main function executes <–c, it will wait for a value to be sent.

Similarly, when the boring function executes c <– value, it waits for a receiver to be ready.

A sender and receiver must both be ready to play their part in the communication.
Otherwise we wait until they are.

Thus channels both communicate and synchronize.

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 22/58

The Go approach

Don't communicate by sharing memory, share memory by communicating.

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 23/58

"Patterns"

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 24/58

Generator: function that returns a channel

Channels are �rst-class values, just like strings or integers.

func boring(msg string) <-chan string { // Returns receive-only channel of strings.
 c := make(chan string)
 go func() { // We launch the goroutine from inside the function.
 for i := 0; ; i++ {
 c <- fmt.Sprintf("%s %d", msg, i)
 time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond)
 }
 }()
 return c // Return the channel to the caller.
}

 c := boring("boring!") // Function returning a channel.
 for i := 0; i < 5; i++ {
 fmt.Printf("You say: %q\n", <-c)
 }
 fmt.Println("You're boring; I'm leaving.") Run

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 25/58

Channels as a handle on a service

Our boring function returns a channel that lets us communicate with the boring service it
provides.

We can have more instances of the service.

func main() {
 joe := boring("Joe")
 ann := boring("Ann")
 for i := 0; i < 5; i++ {
 fmt.Println(<-joe)
 fmt.Println(<-ann)
 }
 fmt.Println("You're both boring; I'm leaving.")
} Run

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 26/58

Multiplexing

These programs make Joe and Ann count in lockstep.
We can instead use a fan-in function to let whosoever is ready talk.

func fanIn(input1, input2 <-chan string) <-chan string {
 c := make(chan string)
 go func() { for { c <- <-input1 } }()
 go func() { for { c <- <-input2 } }()
 return c
}

func main() {
 c := fanIn(boring("Joe"), boring("Ann"))
 for i := 0; i < 10; i++ {
 fmt.Println(<-c)
 }
 fmt.Println("You're both boring; I'm leaving.")
} Run

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 27/58

Fan-in

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 28/58

Restoring sequencing

Send a channel on a channel, making goroutine wait its turn.

Receive all messages, then enable them again by sending on a private channel.

First we de�ne a message type that contains a channel for the reply.

type Message struct {
 str string
 wait chan bool
}

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 29/58

Restoring sequencing.

Each speaker must wait for a go-ahead.

 for i := 0; i < 5; i++ {
 msg1 := <-c
 fmt.Println(msg1.str)
 msg2 := <-c
 fmt.Println(msg2.str)
 msg1.wait <- true
 msg2.wait <- true
 }

 waitForIt := make(chan bool) // Shared between all messages.

 c <- Message{fmt.Sprintf("%s: %d", msg, i), waitForIt}
 time.Sleep(time.Duration(rand.Intn(2e3)) * time.Millisecond)
 <-waitForIt Run

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 30/58

Select

A control structure unique to concurrency.

The reason channels and goroutines are built into the language.

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 31/58

Select

The select statement provides another way to handle multiple channels.
It's like a switch, but each case is a communication:

All channels are evaluated.

Selection blocks until one communication can proceed, which then does.

If multiple can proceed, select chooses pseudo-randomly.

A default clause, if present, executes immediately if no channel is ready.

 select {
 case v1 := <-c1:
 fmt.Printf("received %v from c1\n", v1)
 case v2 := <-c2:
 fmt.Printf("received %v from c2\n", v1)
 case c3 <- 23:
 fmt.Printf("sent %v to c3\n", 23)
 default:
 fmt.Printf("no one was ready to communicate\n")
 }

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 32/58

Fan-in again

Rewrite our original fanIn function. Only one goroutine is needed. Old:

func fanIn(input1, input2 <-chan string) <-chan string {
 c := make(chan string)
 go func() { for { c <- <-input1 } }()
 go func() { for { c <- <-input2 } }()
 return c
}

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 33/58

Fan-in using select

Rewrite our original fanIn function. Only one goroutine is needed. New:

func fanIn(input1, input2 <-chan string) <-chan string {
 c := make(chan string)
 go func() {
 for {
 select {
 case s := <-input1: c <- s
 case s := <-input2: c <- s
 }
 }
 }()
 return c
} Run

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 34/58

Timeout using select

The time.After function returns a channel that blocks for the speci�ed duration.
After the interval, the channel delivers the current time, once.

func main() {
 c := boring("Joe")
 for {
 select {
 case s := <-c:
 fmt.Println(s)
 case <-time.After(1 * time.Second):
 fmt.Println("You're too slow.")
 return
 }
 }
} Run

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 35/58

Timeout for whole conversation using select

Create the timer once, outside the loop, to time out the entire conversation.
(In the previous program, we had a timeout for each message.)

func main() {
 c := boring("Joe")
 timeout := time.After(5 * time.Second)
 for {
 select {
 case s := <-c:
 fmt.Println(s)
 case <-timeout:
 fmt.Println("You talk too much.")
 return
 }
 }
} Run

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 36/58

Quit channel

We can turn this around and tell Joe to stop when we're tired of listening to him.

 quit := make(chan bool)
 c := boring("Joe", quit)
 for i := rand.Intn(10); i >= 0; i-- {
 fmt.Println(<-c)
 }
 quit <- true

 go func() {
 for i := 0; ; i++ {
 time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond)
 select {
 case c <- fmt.Sprintf("%s: %d", msg, i):
 // do nothing
 case <-quit:
 return
 }
 }
 }() Run

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 37/58

Receive on quit channel

How do we know it's �nished? Wait for it to tell us it's done: receive on the quit channel

 quit := make(chan string)
 c := boring("Joe", quit)
 for i := rand.Intn(10); i >= 0; i-- {
 fmt.Println(<-c)
 }
 quit <- "Bye!"
 fmt.Printf("Joe says: %q\n", <-quit)

 select {
 case c <- fmt.Sprintf("%s: %d", msg, i):
 // do nothing
 case <-quit:
 cleanup()
 quit <- "See you!"
 return
 } Run

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 38/58

Daisy-chain

func f(left, right chan int) {
 left <- 1 + <-right
}

func main() {
 const n = 10000
 leftmost := make(chan int)
 right := leftmost
 left := leftmost
 for i := 0; i < n; i++ {
 right = make(chan int)
 go f(left, right)
 left = right
 }
 go func(c chan int) { c <- 1 }(right)
 fmt.Println(<-leftmost)
} Run

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 39/58

Chinese whispers, gopher style

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 40/58

Conclusions

Goroutines and channels make it easy to express complex operations dealing with:

multiple inputs

multiple outputs

timeouts

failure

And they're fun to use.

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 41/58

Conclusions - II

Go (https://golang.org) improves on C/C++/Java/... and addresses C/C++ and python de�ciencies:

code distribution

code installation

compilation/development speed

runtime speed

simple language

and:

serviceable standard library (stdlib doc (https://golang.org/pkg))

builtin facilities to tackle concurrency programming

https://golang.org/
https://golang.org/pkg

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 42/58

Conclusions - III

Don't communicate by sharing memory, share memory by communicating.

Go is great at writing small and large (concurrent) programs.
Also true for science-y programs, even if the amount of libraries can still be improved.

Write your next tool/analysis/simulation/software in Go (https://golang.org/) ?

https://golang.org/

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 43/58

Acknowledgements / resources

tour.golang.org (https://tour.golang.org)

talks.golang.org/2012/splash.slide (https://talks.golang.org/2012/splash.slide)

talks.golang.org/2012/goforc.slide (https://talks.golang.org/2012/goforc.slide)

talks.golang.org/2012/waza.slide (https://talks.golang.org/2012/waza.slide)

talks.golang.org/2012/concurrency.slide (https://talks.golang.org/2012/concurrency.slide)

talks.golang.org/2013/advconc.slide (https://talks.golang.org/2013/advconc.slide)

talks.golang.org/2014/gocon-tokyo.slide (https://talks.golang.org/2014/gocon-tokyo.slide)

talks.golang.org/2015/simplicity-is-complicated.slide (https://talks.golang.org/2015/simplicity-is-complicated.slide)

talks.golang.org/2016/applicative.slide (https://talks.golang.org/2016/applicative.slide)

agenda.infn.it/getFile.py/access?
contribId=24&sessionId=3&resId=0&materialId=slides&confId=11680 (https://agenda.infn.it/getFile.py/access?

https://tour.golang.org/
https://talks.golang.org/2012/splash.slide
https://talks.golang.org/2012/goforc.slide
https://talks.golang.org/2012/waza.slide
https://talks.golang.org/2012/concurrency.slide
https://talks.golang.org/2013/advconc.slide
https://talks.golang.org/2014/gocon-tokyo.slide
https://talks.golang.org/2015/simplicity-is-complicated.slide
https://talks.golang.org/2016/applicative.slide
https://agenda.infn.it/getFile.py/access?contribId=24&sessionId=3&resId=0&materialId=slides&confId=11680

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 44/58

contribId=24&sessionId=3&resId=0&materialId=slides&confId=11680)

https://agenda.infn.it/getFile.py/access?contribId=24&sessionId=3&resId=0&materialId=slides&confId=11680

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 45/58

Backup

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 46/58

Interlude: concurrency & parallelism

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 47/58

Interlude: Sequential, Concurrent & Parallel pizzas

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 48/58

Pizza recipe

(Disclaimer: don't ever eat any pizza prepared or cooked by me.)

How to prepare a (sequential) pizza?

 program main

 call pizza()

 stop
 end

 subroutine pizza()
c ... the special sauce ...
 write(*,*) 'making a pizza...'
 return
 end

Estimated time (1 chef, 1 pizza):

xx-oooo-xxx-oo-###

How to make this faster?

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 49/58

(Sequential) Pizza recipe

Tasks:

wash tomatoes and onions

cut tomatoes, onions

prepare pizza dough

put tomato sauce on top of pizza dough

toppings: put tomatoes, onions, ham and mozarella

(pre-)heat oven, bake

(cut, then eat)

Estimated time (1 chef, 1 pizza):

xx-oooo-xxx-oo-###

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 50/58

Concurrent pizzas - Parallel pizzas

Estimated time (1 chef, 1 kitchen, 2 pizzas):

xx-oooo-xxx-oo-###-xx-oooo-xxx-oo-###

Estimated time (1 chef, 2 kitchens, 2 pizzas):

xx-oooo-xxx-oo+###
 +xx-oooo-xxx-oo-###

Estimated time (2 chefs, 1 kitchen, 2 pizzas):

xx-xxx-+-xx-xxx-+
 +### +###
oooo-oo+-oooo-oo+

Estimated time (2 chefs, 2 kitchens, 2 pizzas):

xx-oooo-xxx-oo-###
xx-oooo-xxx-oo-###

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 51/58

Interlude: concurrency & parallelism

Concurrency is about dealing with lots of things at once.

Parallelism is about doing lots of things at once.

Not the same, but related.

Concurrency is about structure, parallelism is about execution.

Concurrency is a way to structure a program by breaking it into pieces that can be executed
independently.
Communication is the means to coordinate the independent executions.

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 52/58

Concurrency vs Parallelism

Concurrency is about dealing with lots of things at once.
Parallelism is about doing lots of things at once.

Concurrency is about (program) structure.
Parallelism is about (program) execution.

Concurrency is not parallelism, it's better :)

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 53/58

Concurrency plus communication

Concurrency is a way to structure a program by breaking it into pieces that can be executed
independently.

Communication is the means to coordinate the independent executions.

This is the Go model and (like Erlang and others) it's based on CSP:

C. A. R. Hoare: Communicating Sequential Processes (CACM 1978)

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 54/58

Concurrency strategies

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 55/58

Multi-processing

Launch N instances of an application on a node with N cores

re-use pre-existing code

a priori no required modi�cation of pre-existing code

satisfactory scalability with the number of cores

But:

resource requirements increase with the number of processes

memory footprint increases

as do other O/S (limited) resources (�le descriptors, network sockets, ...)

scalability of I/O debatable when number of cores > ~100

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 56/58

Multi-threading

C++11/14 libraries do help a bit:
- std::lambda, std::thread, std::promise
- (Intel) Threading Building Blocks
- ...

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 57/58

Thank you

Sebastien Binet
CNRS/IN2P3/LPC-Clermont
https://github.com/sbinet (https://github.com/sbinet)

@0xbins (http://twitter.com/0xbins)

sebastien.binet@clermont.in2p3.fr (mailto:sebastien.binet@clermont.in2p3.fr)

https://github.com/sbinet
http://twitter.com/0xbins
mailto:sebastien.binet@clermont.in2p3.fr

19/06/2017 Concurrency programming with Go

http://talks.godoc.org/github.com/sbinet/talks/2017/20170601-go-conc-audaces/talk.slide#1 58/58

